CHEMISTRY STUDY MATERIALS FOR CLASS 12 (NCERT Based Questions - Answers of Chapter - 09) GANESH KUMAR DATE:- 25/01/2022

Co-ordination Compounds

Question 1: Write the formulas for the following coordination compounds:

- (i) Tetraamminediaquacobalt (III) chloride
- (ii) Potassium tetracyanonickelate(II)
- (iii) Tris(ethane-1,2-diamine) chromium(III) chloride
- (iv) Amminebromidochloridonitrito-N-platinate(II)
- (v) Dichloridobis(ethane-1,2-diamine)platinum(IV) nitrate
- (vi) Iron(III) hexacyanoferrate(II)

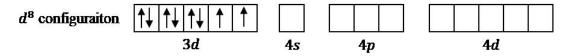
Solution 1:

- (i) CO[(H₂ O)(NH₃)₄] Cl₃
- (ii) K₂ [Ni (CN)₄]
- (iii) Cr[(en)₃]Cl₃
- (iv) Pt [(NH)₃BrCl (NO₂)]
- (v) Pt[Cl₂(en)₂(NO₃)₂]
- (vi) Fe₄ [Fe (CN)₆]₃

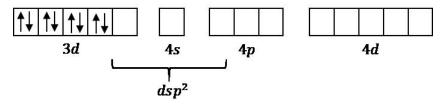
Question 2: Write the IUPAC names of the following coordination compounds:

- (i) [CO(NH₃)₈] Cl₃
- (ii) [CO(NH₃)₆ CI]Cl₃
- (iii) K₃ [Fe (CN)₈]
- (iv) K₃ [Fe (C₂ N₄)₃]
- (v) K 2[PdC I4]
- (vi) [Pt (NH₃)₂Cl (NH₂CH₃)] Cl

Solution 2:

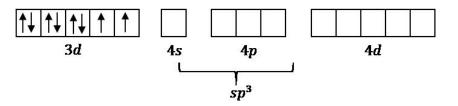

- (i) Hexaamminecobalt(III) chloride
- (ii) Pentaamminechloridocobalt (III) chloride
- (iii) Potassium hexacyanoferrate(III)
- (iv) Potassium trioxalatoferrate(III)
- (v) Potassium tetrachloridopalladate(II)
- (vi) Diamminechlorido(methylamine)platinum(II) chloride

Question 3: Indicate the types of isomerism exhibited by the following complexes and draw the structures for these isomers:


- (i) K [Cr (H₂O)₂ (C₂O₄)₂]
- (ii) [CO(en)₂] Cl₂
- (iii) [Co(NH₃)₆ (NO₂) (NO₃)₂]
- (iv) [Pt(NH₂)(H₂O)Cl₂]

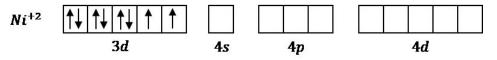
Question 4: Explain on the basis of valence bond theory that Ni (CN)₄ ^{2–} ion with square planer structure is diamagnetic and the Ni (Cl)₄ ^{2–} ion with tetrahedral geometry is paramagnetic.

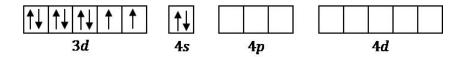
Solution 4: Ni is in the +2 oxidation state i.e., in d⁸ configuration.



There are 4 CN^- ions. Thus, it can either have a tetrahedral geometry or square planar geometry. Since CN^- ion is a strong field ligand, it causes the pairing of unpaired 3*d* electrons.

It now undergoes dsp^2 hybridization. Since all electrons are paired, it is diamagnetic. In case of [NiCl4]^{2–}, Cl[–] ion is a weak field ligand. Therefore, it does not lead to the pairing of unpaired 3*d* electrons.

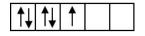

Therefore, it undergoes sp³ hybridization.


Since there are 2 unpaired electrons in this case, it is paramagnetic in nature.

Question 5: [*NiCl*4]^{2–} is paramagnetic while [*Ni*(*CO*)4] is diamagnetic though both are tetrahedral. Why?

Solution 5: Though both [*NiCl*4]^{2 –} and [*Ni*(CO)4] are tetrahedral, their magnetic characters are different. This is due to a difference in the nature of ligands. *Cl[−]* is a weak field ligand and it does not cause the pairing of unpaired 3*d* electrons. Hence, [*NiCl*4]^{2–} is paramagnetic.

In [*Ni*(*CO*)4], Ni is in the zero oxidation state i.e., it has a configuration of $3d^8 4s^2$.



But CO is a strong field ligand. Therefore, it causes the pairing of unpaired 3*d* electrons. Also, it causes the 4s electrons to shift to the 3d orbital, thereby giving rise to sp^3 hybridization. Since no unpaired electrons are present in this case, [*Ni*(*CO*)4] is diamagnetic.

- **Question 6:** [*Fe*(*H*2*O*)6]³⁺ is strongly paramagnetic whereas [*Fe*(*CN*)6]³⁺ is weakly paramagnetic. Explain.
- **Solution 6:** In both $[Fe(H2O)6]^{3+}$ and $[Fe(CN)6]^{3+}$, Fe exists in the +3 oxidation state i.e., in d^5 configuration $d^5 \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$

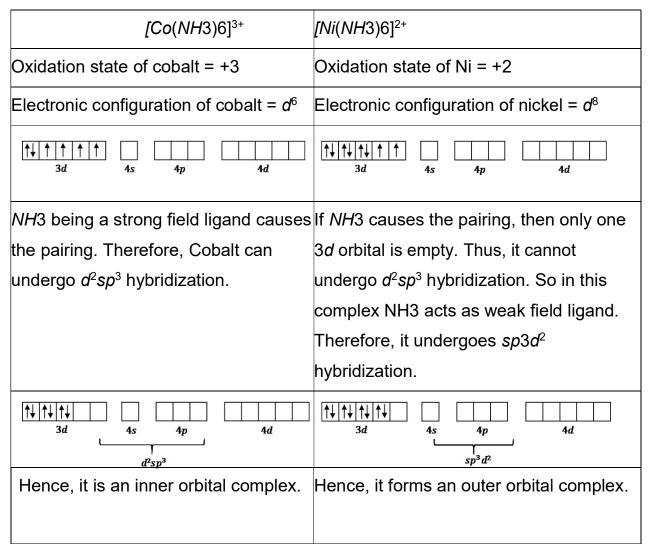
Since CN^{-} is a strong field ligand, it causes the pairing of unpaired electrons.

Therefore, there is only one unpaired electron left in the *d*-orbital.

Therefore magnetic moment is given by,

 $\mu = \sqrt{n(n+2)} = \sqrt{1(1+2)} = \sqrt{3} = 1.732BM$

On the other hand, *H*2*O* is a weak field ligand. Therefore, it cannot cause the pairing of electrons. This means that the number of unpaired electrons is 5.


Therefore, magnetic moment is given by,

 $\mu = \sqrt{n(n+2)} = \sqrt{5(5+2)} = \sqrt{35} = 5.91BM$

Thus, it is evident that $[Fe(H2O)6]^{3+}$ is strongly paramagnetic, while $[Fe(CN)6]^{3+}$ is weakly paramagnetic

Question 7: Explain $[Co(NH_3)_6]^{3+}$ is an inner orbital complex whereas $[Ni(NH_3)_6]^{2+}$ is an outer orbital complex.

Solution 7:

Question 8: Predict the number of unpaired electrons in the square planar $[Pt(CN4)]^{2-}$ ion.

Solution 8: $[Pt(CN4)]^{2-}$ In this complex, Pt is in the +2 state. It forms a square planar structure. This means that it undergoes dsp^2 hybridization. Now, the electronic configuration Pd (+2) of is $5d^8$.

 CN^{-} being a strong field ligand causes the pairing of unpaired electrons. Hence, there are no unpaired electrons in $[Pt(CN4)]^{2-}$.

Question 9: The hexaquomanganese (II) ion contains five unpaired electrons, while the hexacyanoion contains only one unpaired electron. Explain using Crystal Field Theory.

Solution 9:

[Mn(H ₂ O) ₆] ²⁺	[Mn(CN) ₆] ^{4–}
Mn is in the +2 oxidation state.	Mn is in the +2 oxidation state
The electronic configuration is d^5 .	The electronic configuration is d^5 .
The crystal field is octahedral. Water is	The crystal field is octahedral. Cyanide
a weak field ligand. Therefore, the	is a strong field ligand and hence force
arrangement of the electrons in	pairing occurs. Therefore, the
[Mn(H ₂ O) ₆] ²⁺ is t ₂ g ³ eg ² .	arrangement of the electrons in
	[Mn(CN) ₆] ⁴ − is t₂g ⁵ eg ⁰ .
Hence, hexaaquo manganese (II) ion	While hexacyano ion has only one
has five unpaired electrons	unpaired electron.

Question 10: Calculate the overall complex dissociation equilibrium constant for the $[Cu (NH3)4]^{2+}$ ion, given that ₄ for this complex is 2.1x 10¹³.

Solution 10: The overall complex dissociation equilibrium constant is the reciprocal of the overall stability constant,

$$\frac{1}{\beta_4} = \frac{1}{2.1 \times 10^{13}} = 4.7 \times 10^{-14}$$